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Abstract
The deck condition of bridges is one of the most important factors impacting the connectivity and efficiency of transportation
networks. Bridges with quickly deteriorating deck conditions are a huge financial burden for transportation agencies and can
downgrade the efficiency of the whole transportation network. This study utilizes an interpretable machine learning frame-
work, Shapley additive explanation (SHAP), to investigate the associations between various factors, such as wearing surface,
deck structure, and so forth, and bridges with quickly deteriorating deck conditions nationwide. An XGBoost model is
trained to perform the binary classification task on a heavily imbalanced dataset and classify relatively young bridges (less than
20 years old) with poor/fair deck conditions and relatively old bridges (30–40 years old) with good deck conditions in the
National Bridge Inventory (NBI) database. The accuracy of the predictive model is 0.91, and the AUC score is about 0.83.
After applying this well-performed predictive model on the interpretable machine learning framework, the results revealed
that without wearing surface, corrugated steel deck structure, wide bridge structure, and long span are highly associated with
bridges with quickly deteriorating decks. The results also show that bridges with a relatively low average daily traffic (ADT)
or truck percentage of ADTare in a dilemma zone, where the overall traffic or truck volume of the bridge is not low enough
to prevent fast deterioration, but not high enough for eligibility for the funding required for more durable materials during
construction or appropriate maintenance.
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The bridge is a critical component of transportation
infrastructure, providing a safe means to span a physical
obstacle without influencing what lies underneath.
Bridges increase transportation efficiency and reliability,
lower costs, and promote employment and economic
development (1). There are more than 618,000 bridges in
the United States transportation system, over 590,000 of
which are in the highway network, comprising more than
6,000 total miles in length (2). Some 23% of all bridges
are located on urban highways, including urban inter-
state and arterial highways, and these bridges have most
of the average daily traffic (ADT)—about 73% of all
bridge-crossing traffic in the United States (3). The deck
is the surface of a bridge, and it directly transmits vehicle
loads to other supporting structures. The durability of
bridge decks degrades more quickly than that of other
parts of the bridge because of damage and deterioration

caused by direct exposure to physicochemical factors (4).
In some specific areas, the substructures and superstruc-
ture of bridges are in relatively good structural condi-
tion, but the bridge decks deteriorate or age more
rapidly as a result of high traffic volumes, the use of de-
icing agents, and weather effects, long span (5, 6). In the
worst cases, if bridge deck improvement is needed, there
are extra construction costs, and traffic jams and delays
may occur (7). Therefore, deck condition is essential for
bridge functioning, and routine inspection is critical. A
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thorough understanding of the factors resulting in
quickly deteriorating bridge decks and building a deck
condition prediction model could effectively assist trans-
portation agencies in planning the maintenance, repair,
and rehabilitation of bridges, which could prolong the
service life of bridges.

There is abundant literature on deck condition predic-
tion and corresponding factor analysis, from the regres-
sion model (8–14) and Markov Chain (15–20) to Monte
Carlo simulation (16, 19, 21). Lee et al. developed a lin-
ear regression model to analyze the correlation between
the deterioration of highway bridge decks and weather-
related variables, including the number of snowy days,
the amount of snowfall, the number of freeze–thaw days,
and the average winter temperature (12). In another
study, Ghonima et al. applied a random parameters bin-
ary logistic regression to analyze environmental and
structural parameters (9); they found that the following
variables are significant: average daily truck traffic, cli-
mate region, distance from seawater, bridge deck area,
age of the bridge, type of design and/or construction,
structural material design, deck protection, type of mem-
brane, wearing surface, and maintenance responsibility.
Hasan and Elwakil used stochastic regression analysis to
model the impact of explanatory variables, including
ADT, structure length, deck width, roadway width, skew
degrees, max span length, and inspection frequency on
deck condition (10). Morcous et al. combined genetic
algorithms and the Markovian deterioration model for
concrete bridge decks to analyze the environmental vari-
ables, such as highway class, region, ADT, and percent-
age of truck traffic (22). Morcous developed transition
probability matrices for different elements of deck condi-
tion and utilized deck inspection data and Bayes’ rule to
adjust the Markov Chains (20). The results illustrated
that the deck condition independence assumption from
Markov Chains is acceptable with a 95% level of confi-
dence. However, the Markov Chain prediction could be
biased, depending on the parameters of transition prob-
abilities. To decrease the bias, the Monte Carlo simula-
tion methods were presented. The experiment indicated
that the simulation prediction model has better predic-
tion accuracy (16).

On the other hand, data-driven approaches are
becoming increasingly popular in prediction in recent
years (23). Compared with conventional statistical mod-
els, data-driven approaches have demonstrated their
accuracy, especially with high-dimensional large datasets
or sparse datasets (24). Therefore there are more and
more studies utilizing sufficient and appropriate data to
predict or evaluate the deck condition, such as actual
bridge deck survey data (24–26), ground-penetrating
radar data (27, 28), and National Bridge Inventory
(NBI) data (29, 30). Nguyen and Dinhapplied the

Artificial Neural Network (ANN) to predict future deck
conditions in Alabama, United States (31). The model
accuracy was between 73.6% and 98.5%, with a margin
error of 6 1. Moreover, Inkoom et al. employed ADT,
truck factor, roadway functional class, asphalt thickness,
and pavement condition time series data in recursive par-
titioning and used an ANN model to predict the rating
of pavement (32). In comparison, Huang used ANN
classification on Wisconsin’s concrete bridges to predict
deck condition ratings based on geometrical, functional,
and environmental factors (25). Similarly, decision-tree
classification algorithms have been used to model deck
deterioration (24). Assaad and EI-adaway developed an
ANN and k-nearest neighbors (KNNs)-based bridge
management system to assess and predict bridge deck
deterioration conditions (29). Liu and Zhang utilized
convolutional neural network models and bridge data
from the Federal Highway Adminstration (FHWA) for
three primary components of Maryland highway bridges:
deck, superstructure, and substructure, which have been
trained and validated (33). Rafiq et al. considered the
complex interdependencies within elements of engineer-
ing systems, and then applied the Bayesian Belief
Network to build a condition-based deterioration model
at the bridge-group level (34).

In the past, many studies utilized various models to
predict deck conditions and explore the impact of certain
factors affecting deck deterioration. However, the major-
ity of these studies only consider a certain type of bridge
deck, like concrete (19, 30, 35), or a limited number of
bridges only in certain geographical areas (9, 24, 29, 33,
36). Only a few studies have used nationwide bridge data
for such studies. Moreover, for all bridges built after
1980 in the NBI, there are 1,635 bridges built in the past
20 years with deck conditions that are poor or fair,
whereas 32,148 bridges built at least 30 years ago have
decks in good condition. These bridges with quickly
deteriorating decks could be a huge burden on transpor-
tation agencies financially. Meanwhile, they could lead
to inefficiency of the whole transportation network. An
in-depth understanding of these bridges with quickly
deteriorating decks is important and necessary. To the
knowledge of the authors, there are no published articles
that compare bridges with quickly deteriorating decks to
relatively older bridges with decks in good condition.
This paper used a nationwide bridge database to under-
stand why the deck condition of some relatively young
bridges deteriorates faster than others and why the deck
condition of some fairly old bridges is still good without
reconstruction.

Many machine learning algorithms, such as random
forest, gradient boosting, and neural network have been
applied in predicting deck conditions. The machine learn-
ing algorithms generally perform better than
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conventional statistical modeling, but the interpretability
of the result is the main weakness. For conventional sta-
tistical models and many machine learning algorithms,
imbalanced data is a problem that cannot be easily
handled. Therefore, this study adopts the XGBoost algo-
rithm for building the predictive model. The XGBoost is
outstanding in classification tasks, such as predicting
deck conditions, for its high prediction accuracy, the abil-
ity to handle imbalanced data, and its computational effi-
ciency (37–39). To tackle the interpretability issue, this
study utilized an interpretable machine learning frame-
work—Shapley additive explanation (SHAP) (40). SHAP
is a framework based on game theory to reveal the mar-
ginal effects of features through local interpretability
(40). More mathematical details about SHAP will be dis-
cussed in the methodology section.

Thus, this study first builds the predictive model using
XGBoost and then utilizes an interpretable machine
learning framework—SHAP—to explore the associations
of these quickly deteriorating decks and various factors.
The research question is formulated as a binary classifi-
cation task: relatively young bridges (less than 20 years
old) with poor/fair deck conditions versus relatively old
bridges (between 30 years old and 40 years old) with good
deck conditions. After the predictive model is trained, it
is applied to the SHAP framework. Therefore, the asso-
ciations between these quickly deteriorating decks and
various factors can be revealed.

Methods

Problem Formulation

The research problem is formulated as a binary classifi-
cation task. Two categories are created to measure the
fast deterioration deck condition. One category is the
young_poor, and another is old_good. For young_poor,
it stands for bridges under 20 years old (from 2000–2020)
with poor/fair deck conditions. For old_good, it means
bridges between 30–40 years old (from 1980–1990) with
good deck condition. The young_poor bridges are the
ones with quickly deteriorating decks. To fit the classifi-
cation model, the young_poor cases are considered posi-
tive cases and equals 1, and the old_good cases are
treated as negative cases and equals 0.

Figure 1 shows the flow chart of data processing and
the modeling process. The detailed parameters tuning for
the XGBoost model will be discussed in the XGBoost
model section below.

XGBoost

XGBoost is a general tree boosting algorithm. First, a
tree is trained by using the features and targets of the
training set, then the predicted values of each sample are

obtained, and the residual between the predicted value
and true value is calculated. Next, when training other
trees, the residual is taken as the goal, and the algorithm
will stop when the total tree number reaches the setting
or when the error of the verification set reaches the
threshold. Finally, each tree’s output sample value is
added, which is the final predicted value of the sample.

XGBoost’s objective function in Equation 1 has two
parts. The first part is used to measure the difference
between the predictive values and true value, and the sec-
ond part is the regularization term. The regularization
term also contained two parts, shown in Equation 2. T
represents the number of leaf nodes, and w represents
the score of leaf nodes. g can control the number of leaf
nodes, l can control the score of leaf nodes will not be
too large, to prevent overfitting.
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The newly generated tree is to fit the residual of the
last prediction. After the t tree is generated, the predic-
tive value can be written as Equation 3. Then, the objec-
tive function could be changed to Equation 4. XGBoost
implements Taylor approximation to find ft to minimize
the objective function.
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where
gi is the first-order gradient statistic on the loss

function;
hi is the second-order gradient statistic on the loss

function.
The primary aim of the XGBoost is to develop a clas-

sification model between young bridges with poor condi-
tion and old bridges with good condition, not only
predicting the deck performance but also analyzing the
importance of contributing factors. The hyperpara-
meters’ tuning is critical for the precision and overfitting
prevention of the model. According to Occam’s razor
principle, the model should not be complicated unneces-
sarily, so that the following hyperparameters are selected
to optimize the model with grid search and 10-fold cross-
validation. The learning_rate is a parameter that
improves the stability of the model and reduces
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overfitting. The smaller the parameter is, the more learn-
ing space for the further trees. Max_depth controls the
maximum number of nodes in the tree model. Increasing
the number will increase the complexity of the model
and reduce the generalization ability of the model.
Min_child_weight is to stop the node splitting, which
effectively prevents the overfitting and learning from spe-
cial samples. Subsample manages the proportion of ran-
dom sampling of each tree. If the number is small, the
algorithm will be more conservative. However, the model
may be underfitting if the number is too small.
Colsample_bytree is used to control the percentage of
features randomly sampled per tree. In the case of node
splitting, the node will be split only if the decreased value
of the loss function is greater than the minimum loss
reduction required for node splitting. Reg_alpha could
help faster algorithm coverage in the case of the high-
dimensional dataset. Reg_lambda is to control the regu-
larization part of XGBoost and to reduce the overfitting.
When the dataset is imbalanced, setting scale_
pos_weigh to the ratio of the number of negative samples
to the number of positive samples would improve the
model to better distinguish between positive and negative
samples. Last but not least, the number of estimators is
determined by cross-validation so that the parameter has
no need for manual setting.

SHAP

The SHAP is a method to interpret the result of the
machine learning technique. Lundberg and Lee proposed

SHAP to explain the tree-based machine learning model
by estimating the contribution of each feature prediction
based on the game-theoretic approach (40). The feature’s
importance is determined by calculating the contribution
of the single feature in the total features. The steps are to
calculate the income of a feature in the combination and
subtract the benefit when the combination does not
include this feature, then calculate all combinations and
weighted average to get the overall contribution of the
feature. The Shapley value estimation is calculated by
Equation 6. The Shapley value evaluates the sum of mar-
ginal contribution of feature i across each subset of the
whole feature.

Fj valð Þ

=
X

S�fx1::::xpgnfxjg

Sj j! p� Sj j � 1ð Þ!
p!

(val(S [ fxjg)� val(S))

ð6Þ

where
P is the set contains all feature;
xj is the feature i;
S is one of the subsets of P; and,
val(�) refers to the trained model with the feature.

Model Evaluation

The confusion matrix, a two-dimensional matrix with
abscissa as the prediction result and ordinate as the true
value, is an effective and useful evaluation tool in classifi-
cation. Many metrics can be calculated through the con-
fusion matrix, such as accuracy, precision, recall, and F1
score. However, the young bridge with poor deck condi-
tion is imbalanced by nature, and the minority group is
more likely to be misclassified. Therefore, this study con-
siders the two measurements from the confusion matrix
to evaluate the model’s performance to the majority and
minority group: True Positive Rate (TPR) and True
Negative Rate (TNR), as shown in Equations 7 and 8. In
the proposed model, the TPR is calculated as the number
of the correct old bridge with good deck condition occur-
rence prediction divided by the total number of the old
bridge with good deck condition in the testing dataset.
The TNR represents the ratio of correct prediction of the
young bridge with poor deck condition to the total num-
ber of the young bridge with poor deck condition in the
testing dataset. These two metrics range from 0 to 1,
where 0 indicates the imprecise and 1 indicates the accu-
racy. Besides, the Receiver Operating Characteristic
curve is another classification metric based on False
Positive Rate and TPR. The area under the ROC curve,
which also is called AUC, is selected to evaluate the mod-
el’s ability to classify positive and negative conditions
under an imbalanced dataset. The AUC ranges from 0.5

Figure 1. The flow chart of data prepocessing and proposed model.
Note: AUC = area under the ROC curve; ROC = receiver operating

characteristic; SHAP = Shapley additive explanation; TNR = true negative rate;

TPR = true posistive rate; NaN = the value is undefined or unpresentable.
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to 1, where 0.5 indicates the worst and 1 indicates the
best. Other commonly used performance measurements,
like precision and F1 score, also can be derived from
TPR and TNR.

TPR=
Num(true positive assessments)

Num(all positive assessments)
ð7Þ

TNR=
Num(true negative assessments)

Num(all negative assessments)
ð8Þ

Data Preparation

This study uses the NBI, which is maintained by FHWA
and includes all highway bridges more than 20 ft long
used for vehicular traffic in the United States. The data-
base contains detailed information about location, struc-
ture type and materials, inspection, condition evaluation,
traffic data, and climate data. Therefore, the NBI data
are a valuable and solid resource for exploring bridge
deterioration patterns and predicting future deck condi-
tions. This research is conducted with the latest NBI data
for the United States from 1980 to 2020 in a total of
40 years. The dataset of all states except Alaska, District
of Columbia, Guam, Hawaii, Puerto Rico, and the
Virgin Islands is used.

Data Preprocessing

The raw data contained 215,974 bridge records. The raw
data were cleaned by the following steps: (1) remove the
bridge without a deck; (2) remove the reconstructed
bridge because the focus of the research is to analyze the
deterioration without maintenance; (3) remove features
only for identification purposes, such as structure num-
ber (unique identification of the bridge), county name;
(4) drop the data with majority of features missing to
improve the performance of the model; (5) group some
categorical data. For example, there are only 27 bridges
among all highway bridges with aluminum deck struc-
ture type. Categories with a small proportion are aggre-
gated into ‘‘others’’ type to reduce the negative impact
on model performance; (6) filter the outlier of numerical
data, for example, the bridge with zero ADT or with
negative age. FHWA’s general deck condition ratings
are from 0 to 9 and N, in which N represents no applica-
tion, and 0 to 9 separately indicate failed, ‘‘imminent’’
failure, critical, serious, poor, fair, satisfactory, good,
very good, and excellent condition. Moreover, for the
better performance of the model, the deck condition
should be grouped (41). All bridges with deck conditions
rating below five were grouped into poor condition, deck
condition rated five or six are classified as fair, and all
bridges above six were grouped into good condition.
This classification method follows the ‘‘Pavement and

Bridge Condition Performance Measures final rule,’’
published by FHWA in 2017 (42). Meanwhile, the
bridges under 20 years are grouped into the young bridge
category and above 30 years to the old bridge. Finally,
the deck condition and bridge age are combined to
obtain deck performance. The data of young bridges
with poor conditions and old bridges with good condi-
tions are reserved for further analysis. By the data pro-
cessing of the above step, 152,714 data remained. Then,
the categorical nominal variables are converted into ordi-
nal variables for model training. This transformation
ensures that the categories are mutually independent and
does not generate new variables and sparse matrices like
One Hot Encoder. At the end of data preprocessing, the
dataset is divided into the training set (80%) and the test-
ing set (20%).

The descriptions and descriptive statistics of the cate-
gorical and numerical features are presented in Tables 1
and 2, respectively.

Model Performance

The major challenge for this modeling process is to
appropriately handle this heavily imbalanced dataset
with less than 5% positive cases—bridges with quickly
deteriorating deck conditions—out of the whole dataset.
Fortunately, the XGBoost model provided a parameter
to increase the weight of the parameters for positive
cases during the training. The final model reached an
accuracy score of 0.91, F1 score of 0.95, and AUC score
of 0.83. For the comparison purpose, this analysis also
ran multiple additional commonly used classification
algorithms—LightGBM (43), gradient boosting decision
tree (GBDT) (44), and AdaBoost (44). The model perfor-
mance is presented in Tables 3 and 4, and Figure 2.
Table 3 shows the general classification model perfor-
mances. The accuracy scores of all candidate models are
above 90%. Comparing these measurements of
XGBoost with other models, other models may have
higher scores on the accuracy, precision, and F1 score in
Table 3, but only the XGBoost model has an above 0.8
AUC score (Figure 2) across all models.

However, for a heavily imbalanced dataset, like the
dataset for this study, these common performance mea-
surements for classification models could be misleading.
A poorly performed model could also have a high accu-
racy score with an imbalanced dataset if the model classi-
fies all cases as negative. Therefore, in Table 4, a
confusion matrix is also reported. For the positive cases
(bridges with fast deteriorating decks), 74% of young
bridges with poor deck conditions and 92% of old
bridges with good deck conditions are correctly classified
by the XGBoost model. For the cases for young bridges
with poor deck conditions, which are positive cases in
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this study setting, the XGBoost model has a significantly
higher correctly prediction rate—74%. Table 4 shows
that LightGBM, AdaBoost, and GBDT only have 7%,
41%, and 22%, respectively. Therefore, the XGBoost
model is adopted because of its superior performance in
this study.

Results

Global Feature Performance

Feature importance is a typical measurement to describe
the contribution of a feature to the classification task for
a tree boosting model. The value of the feature

Table 1. Description and Descriptive Statistics of Categorical Feature

Variable Description Levels

Old_Good Young_Poor

Count Per. (%) Count Per. (%)

Owner agency Type of agency that is the
primary owner of the bridge

State highway agency 14,204 44.18 616 37.68
County highway agency 13,478 41.92 788 48.20
Other 4,466 13.89 231 14.13

Main design mat Main kind of material and design
of the mat

Concrete 4,297 13.37 241 14.74
Concrete continuous 3,070 9.55 152 9.30
Prestressed concrete 12,547 39.03 374 22.87
Prestressed concrete continuous 3,416 10.63 307 18.78
Steel 5,308 16.51 474 28.99
Steel continuous 2,702 8.40 57 3.49
Wood or timber 808 2.51 30 1.83

Main construction design Predominant type of
construction design

Box beam or girders—multiple 3,519 10.95 500 30.58
Box beam or girders—single or spread 1,192 3.71 31 1.90
Channel beam 1,149 3.57 27 1.65
Others 720 2.24 68 4.16
Slab 6,694 20.82 212 12.97
Stringer/multi-beam or girder 16,960 52.76 759 46.42
Tee beam 1,914 5.95 38 2.32

Approach spans If existed approach spans Yes 1,918 5.97 42 2.57
No 30,230 94.03 1,593 97.43

Deck structure Predominant type of deck
system on the bridge

Concrete cast-in-place 23,317 72.53 1,108 67.77
Concrete precast panels 5,494 17.09 195 11.93
Corrugated steel 622 1.93 69 4.22
Other 1,475 4.59 142 8.69
Wood or timber 1,240 3.86 121 7.40

Wearing surface Wearing surface of the bridge
deck

Bituminous 7,738 24.07 175 10.70
Epoxy overlay 487 1.51 4 0.24
Gravel 976 3.04 36 2.20
Integral concrete 704 2.19 37 2.26
Monolithic concrete 17358 53.99 623 38.10
None 4,253 13.23 667 40.80
Other 275 0.86 22 1.35
Other concrete 350 1.09 9 0.55
Wood or timber 407 1.27 62 3.79

Membrane Membrane type of the bridge
deck

Built-up 312 0.97 44 2.69
Epoxy 225 0.70 5 0.31
None 24,378 75.83 1,511 92.42
Other 6,427 19.99 61 3.73
Preformed fabric 806 2.51 14 0.86

Deck protection Protective system of the bridge
deck

Epoxy-coated reinforcing 8,679 27.00 280 17.13
Galvanized reinforcing 20 0.06 43 2.63
Internally sealed 159 0.49 0 0.00
None 17,829 55.46 1,253 76.64
Other 5,452 16.96 58 3.55
Polymer impregnated 9 0.03 1 0.06

Note: prop. = proportion.
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importance is often considered as the marginal effect of
a feature for the model output. The SHAP algorithm
uses the mean (|SHAP value|) to measure the feature
importance, as shown in Figure 3.

Figure 3 shows that all selected features considerably
contribute to model predictions except for the approach
span. In other words, these selected features are associ-
ated with quickly deteriorating decks. The wearing sur-
face and structure width of the bridge are the two most

dominant features affecting the deteriorating rate of the
deck conditions. Other features, such as ADT, the num-
ber of snowfall days, average length of a span, structure
length, main design material, truck percentage of the
ADT, predominant type of construction design, deck
structure, the number of spans, owner agency, deck pro-
tection type, and membrane also show impact on the
deck conditions. The approach span has the least impact
on the deck condition. These factors are widely accepted

Table 2. Description and Descriptive Statistics of Numerical Features

Variable Description Mean SD Min. Max.

Old bridge with good deck (n = 32,148)
ADT Average daily traffic 5,658 11,965 10 100,000
Number of spans Number of spans in the main or major unit 3 2 1 48
Structure length Length of the structure 168 205 20 3,561
Truck percent of ADT Percentage of average daily traffic that is truck traffic 7 8 0 98
len_span Average length of span 64 58 4 992
Structure width Width of the structure 38 17 4 195
Number of snowfall days Total snowfall in the current life cycle of bridge 43 40 0 206

Young bridge with poor deck (n = 1,635)
ADT Average daily traffic 6,080 12,517 10 96,000
Number of spans Number of spans in the main or major unit 2 2 1 34
Structure length Length of the structure 163 224 20 2,146
Truck percent of ADT Percentage of average daily traffic that is truck traffic 5 7 0 99
len_span Length of the maximum span measured along the centerline of the bridge 75 61 7 942
Structure width Width of the structure 43 28 8 180
Number of snowfall days Total snowfall in the current life cycle of bridge 43 39 0 193

Note: SD = standard deviation; Min. = minimum; Max. = maximum.

Table 3. Model Performance Scores (XGBoost model has a better performance)

Model Accuracy Precision F1 score AUC

LightGBM 0.95 0.95 0.94 0.53
GBDT 0.96 0.95 0.95 0.61
AdaBoost 0.96 0.96 0.96 0.70
XGBoost 0.91 0.95 0.93 0.83

Note: AUC = area under the ROC curve; ROC = receiver operating characteristic; LightGBM = Light Gradient Boosting Machine; GBDT = gradient

boosting decision tree.

Table 4. Confusion Matrix

LightGBM AdaBoost

Actual negative Rate (%) Actual positive Rate (%) Actual negative Rate (%) Actual positive Rate (%)

Predicted negative 6,421 100 5 0 6,386 99 40 1
Predicted positive 304 93 22 7 193 59 133 41

GBDT XGBoost

Actual negative Rate (%) Actual positive Rate (%) Actual negative Rate (%) Actual positive Rate (%)

Predicted negative 6,391 99 35 1 5,923 92 503 8
Predicted positive 253 78 73 22 84 26 242 74

Note: LightGBM = ; GBDT = gradient boosting decision tree; LightGBM = Light Gradient Boosting Machine.
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and discussed in many previous studies as contributing
factors to the deck conditions (34, 41). What makes this
finding unique and more interesting is the SHAP frame-
work can provide the feature importance and offer the
detailed marginal effects of each feature on the deck con-
ditions. More details about how these features affect the
deck conditions will be discussed in the following
sections.

Feature Importance of Numerical Features

The SHAP algorithm also provides a detailed feature
importance plot for continuous features, which is also

introduced as local interpretability in the original SHAP
paper (40). The feature importance bar in Figure 4 con-
sists of points. Each point is an observation in the origi-
nal dataset. The color of the point indicates feature
value—red is high, and blue is low. The horizontal posi-
tion of the point on the x-axis indicates the SHAP value
of that feature for that particular observation. Positive
and higher SHAP value means the prediction leaning
more to predict the bridge as a relatively young bridge
with poor deck conditions, and negative and lower
SHAP value represents the bridge is more likely to be an
old bridge with good deck condition. To avoid incor-
rectly interpreting the plot, it is important to note that
some features may present a clear trend: the feature value
generally linearly affects the prediction results, such as
structure width and the average length of a span. Some
features, such as structure length, may show mixed
trends, which are not linear and require future analysis.
Features showing mixed trends do not suggest the impact
of the feature on the deck condition is totally random.
There are interactive effects among different features.

A wider deck surface increases the probability of
quickly deteriorating deck conditions for relatively
younger bridges for structure width. Bridges with a wider
structure width often have more lanes and require more
supports in the lateral direction. More lanes also indicate
more traffic. These factors associated with the wider
width may cause fast deterioration for young bridges.
For the average length of the span, the bar clearly shows
that a longer average length of the span leads to quickly
deteriorating deck conditions. In general, bridges with
more spans tend to have better performance of the deck
condition.

Individual Feature’s Effect

The partial dependence plot (PDP) is a critical approach
that collectively shows a feature value’s corresponding
SHAP value. PDP provides a visual way to understand
how the changing values of a feature could affect the
model output through SHAP values. In other words, the
plot shows how each feature affects the deck condition.
Figures 5 to 8 present the PDPs for eight selected fea-
tures, including four categorical features (climate region,
deck structure, wearing surface, deck protection) and
four numerical features (number of spans, average length
of a span, ADT, truck percentage of ADT). The x-axis
and y-axis (on the left-hand side) of the PDP represent
the feature value and the corresponding SHAP value of
a particular feature value. A positive and higher SHAP
value means the deck condition is more likely to be clas-
sified as a quickly deteriorating condition. On the right-
hand side of the y-axis, the color bar indicates the value
of another feature. Each point (individual observation)

Figure 2. AUC curve of the candidate models.
Note: AUC = area under the ROC curve; ROC = receiver operating

characteristic; LightGBM = Light Gradient Boosting Machine; GBDT =

gradient boosting decision tree.

Figure 3. Feature importance based on SHAP values.
Note: ADT = average daily traffic; SHAP = Shapley additive explanation.
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in the plot is colored by the value of this feature, which
could offer additional value for the interpretation.
Details about how the changing right-hand feature value
would help the interpretation will be discussed in later
sections

Wearing Surface. The wearing surface is a layer over the
bridge deck to provide a smooth surface for the traffic
and protect the bridge against abrasion from vehicles
(45). In Figure 5, the only category of the wearing sur-
face feature dominantly associated with the quickly dete-
riorating deck condition is without wearing surface. This
finding proves the importance of having a wearing sur-
face. Some 89% of these ‘‘non’’ wearing surface (bridges
without a wearing surface) bridges have a ‘‘concrete cast-
in-place’’ deck structure. Nevertheless, across all types of

wearing surface, bituminous, epoxy overlay, and gravel
are three types of wearing surface with better perfor-
mance than others. From the right-hand side y-axis, the
bridges with gravel decks often have low traffic. The rel-
atively low usage of the bridge may partly explain the
good performance of decks with this wearing surface.
Moreover, decks with integral concrete or monolithic
concrete type of wearing surfaces have decent perfor-
mance on protecting the deck condition.

Deck Structure. Figure 6 shows the effects of deck struc-
ture on the deck conditions. The concrete cast-in-place
structure is highly associated with the old bridge still
having a good deck condition. The concrete cast-in-place
structure has no beams under the deck. This structure
uses embedded reinforcing steel and thick concrete to
carry the loads (46). This type of deck structure is rela-
tively maintenance-free and has better performance than
other structure types. The corrugated steel structure is
also commonly used in bridges across the U.S. This type
of structure is easy to install and lightweight, which
could potentially increase the load that a bridge can sup-
port. However, the corrugated steel structure is highly
associated with the young bridge with a quickly deterior-
ating deck condition compared with all other deck types.
Except for the concrete cast-in-place structure and the
corrugated steel structure, the associations between the
deck condition and other deck structures are less
dominant.

Figure 4. Local interpretability of the feature importance.
Note: ADT = average daily traffic; SHAP = Shapley additive explanation.

Figure 5. Partial dependence plot of wearing surface.
Note: ADT = average daily traffic; SHAP = Shapley additive explanation.

Figure 6. Partial dependence plot of the deck structure.
Note: ADT = average daily traffic; SHAP = Shapley additive explanation.
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Structure Width and ADT. Bridge structure width and ADT
are the second and third most dominant features associ-
ated with deck conditions. Figure 7, a and b, indicates
the marginal effects of the structure width and ADT on
the deck conditions. Figure 7a illustrates that a bridge’s
deck condition is more likely to be classified as quickly
deteriorating as the width of the bridge becomes wider.
Wider bridges normally require more supports to distri-
bute the weight and more joints to accommodate the
shrinkage and temperature variation. At the same time,
more supports and joints make the deck of a bridge more
vulnerable.

Meanwhile, a wider bridge could also mean more
lanes and higher traffic volume. The color bar on the
right side of Figure 7a represents the ADT value. As the
ADT goes up, the color of individual points changes
from blue to red. The figure shows that as the structure
width goes up, the value of ADT increases. Thus, a
higher ADT may contribute to the quickly deteriorating
deck condition. However, Figure 7b disagrees with this
speculation. First, this figure shows that the effects of
ADT on deck conditions are not linear. Second, the gen-
eral trend is that the bridge with a higher ADT has less
chance to have a quickly deteriorating deck condition.
The right-hand sidebar also indicates that bridges with
higher ADT are mostly owned by state highway agen-
cies. In reality, a higher traffic volume could cause more
damage to the deck of a bridge. However, because of the
bridges’ importance in connecting the road networks,
bridges with high traffic volume attract more attention
and funding and are often better maintained by the state
highway agencies.

Average Length of a Span and Number of Spans. Figure 8a
shows the effect of the average length of a span on the

deck conditions, and Figure 7b shows the effects of the
number of spans on the deck conditions. Two features
show opposite effects on the deck conditions as their val-
ues increase. For the average length of a span, a long
span has negative impacts on the deck condition.

Figure 8a suggests that the bridge with an average
length of a span longer than 200 ft is more likely to have
a quickly deteriorating deck condition. Multiple previous
studies mentioned that long-span bridges could compro-
mise the decks’ durability because of the vibration
mechanisms (6, 47, 48). As mentioned in the data descrip-
tion section, for the number of spans, among all selected
bridges for this analysis, about 80% of bridges only have
one or two spans. However, the overall trend remains: an
increasing number of spans positively affects the deck
conditions. More spans may help the bridge structure
evenly distribute the loads and generate less impact on
the deck condition. Figure 8b also presents a sudden
increase in the chance of quickly deteriorating deck con-
dition when the number of spans is over about 20. Out of
33,783 bridges in this study, there are only 61 bridges
with over 20 spans. This tiny fraction of bridges may
require further investigation on this particular issue.

Truck Percentage of ADT. Compared with passenger vehi-
cles, which are the majority in the traffic, trucks have
much higher impacts on the road surface and deck
conditions.

There are multiple interesting findings in this PDP in
Figure 9. First, for bridges with relatively low truck per-
centages (less than about 8%), the influences of low truck
percentages on the deck condition are limited. However,
there still exists a trend, the likelihood of being classified
as quickly deteriorating decks increases when the truck
percentage goes up. Up to about 8%, the bridge is more

Figure 7. Partial dependence plots of (a) structure width and (b) average daily traffic (ADT).
Note: SHAP = Shapley additive explanation.
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likely to have quickly deteriorating decks. Interestingly,
this trend quickly drops, and the majority of bridges with
a relatively high truck percentage are less likely to have
quickly deteriorating decks. There are two possible expla-
nations. First, although a higher truck percentage does
not always imply a higher ADT, two features could be
concurrent in many road segments. As discussed above,
bridges with a higher ADT often are managed by state
highway agencies and are eligible for receiving more
funding for maintenance. Second, there are additional
sources for supporting the roads, bridges with high truck
traffic, such as National Highway Freight Network
(NHFN) (49). Another finding is that, for a bridge with a
relatively high truck percentage (higher than 8%), the
bridge is more likely to have a quickly deteriorating deck
when the span length is long (see points in the green

circle). This finding shows that trucks could result in even
more damage to bridges with long spans because of their
heavy weights.

Interaction Effect

The contribution of a feature to the final classification
consists of two parts: the main effect and the interaction
effect. The main effects of the features were introduced in
the previous section. SHAP can also calculate interaction
values among two features. After analyzing the interac-
tion effects among all features, the results indicate that
ADT has apparent interaction effects with the average
span length.

Interaction Effect Between the ADT and Average Length of a
Span. Figure 10 shows the patterns of the interaction
effect for ADT and the average span length. For bridges
with relatively short spans (blue color dots), the interac-
tion values consistently gather around zero SHAP value
as ADT increases, which indicates the interaction effect
between ADT and average short span length has no clear
impact on the deck deterioration. For bridges with longer
spans (red color dots), the interaction effect increases the
odds of a bridge having a fast deteriorating deck condi-
tion when the ADT is less than about 30,000. However,
as the ADT increases, the interaction effect reduces the
probability of a bridge having a fast deteriorating deck.
This does not suggest that longer spans could better
maintain the deck condition with heavier traffic than
short spans. Considering the results and discussions for
Figures 7b and 8a, what data-driven results presented in
Figure 9 show is that, in the real world, bridges with
more traffic volume could have more funding resources
and higher maintenance standards to maintain a better

Figure 8. Partial dependence plots of (a) average length of a span and (b) number of spans.
Note: ADT = average daily traffic; SHAP = Shapley additive explanation.

Figure 9. Partial dependence plot of truck percentage of average
daily traffic (ADT).
Note: SHAP = Shapley additive explanation.
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deck condition. Therefore, bridges with more traffic vol-
ume could have higher odds of having good deck condi-
tions for long spans.

Findings

The major findings are listed below:

� Wearing surface, structure width, ADT, number
of snow days, span length, truck percentage of
traffic, and so forth, are associated with fast deck
deterioration.

� Having a wearing surface is critical for protecting
the bridge deck.

� Out of multiple wearing surface types listed in the
dataset, bituminous and epoxy overlay wearing
surface types are highly associated with relatively
old bridges with good deck conditions.

� For deck structure, the concrete cast-in-place type
has the best performance on deck conditions, and
the corrugated steel type is highly associated with
quickly deteriorating decks.

� A wider bridge structure increases the chance of
having a quickly deteriorating deck. A wider
bridge often requires more supports and joints to
distribute the weight and handle the temperature
variation, which may hinder the deck
performance.

� Bridges with a higher ADT have less chance to
have quickly deteriorating decks. Bridges with
higher ADTs often are managed by state highway
agencies and possibly could receive more funding
for maintenance.

� Long-span bridges lead to quickly deteriorating
decks, and more spans for a bridge increase the
stability and performance of the deck.

� For a bridge with a relatively low truck percentage
of ADT, deck condition is less likely to suffer
quickly deteriorating, but the likelihood increases
as the truck percentage increases. Interestingly,
for a bridge with a relatively high truck percent-
age, the likelihood of having a quickly deteriorat-
ing deck drops, and this trend is maintained as the
percentage continuously goes up. There are pro-
grams like NHFN that support and locate more
resources for these bridges with high truck
volumes to keep these decks in good condition.

� The interaction analysis shows that the long span
length has a negative impact on deck conditions
with bridges with a relatively small ADT. This
negative impact decreases while the ADT
increases, which suggests that bridges with a
higher ADT may receive more maintenances or
funding resources.

Conclusions

This study investigates the associations between the
bridges with quickly deteriorating decks and deck
condition-related factors through an interpretable
machine learning framework. Data on all bridges avail-
able in the NBI and built in 40 years are collected. The
bridges under 20 years old with poor or fair deck condi-
tions are considered as young bridges with quickly dete-
riorating decks, and bridges older than 30 years old and
with good deck conditions are considered as old bridges
with good deck conditions. There are 33,783 bridges that
fit the criteria and are analyzed. The analysis is per-
formed in two steps. The first step is to train the predic-
tive classification model. The research question has been
formulated as a binary classification task, and the predic-
tive classification model is trained by the XGBoost
model. Second, the trained models are applied to the
SHAP interpretable machine learning framework, and
results are discussed and summarized.

The results reveal a list of features associated with
quickly deteriorating decks, such as wearing surface,
structure width, and so forth. The bituminous and epoxy
overlay wearing surface types are found to have the best
performance on protecting the decks. The analysis also
demonstrates corrugated steel deck structure, wide bridge
structure, and long span are highly associated with
quickly deteriorating decks. Bridges with a relatively low
ADT or truck percentage of ADT are more likely to have
quickly deteriorating bridges. The reason behind this
interesting finding could be that although the ADT or
truck percentage of ADT is relatively low, the traffic vol-
ume or truck volume is not low enough to neglect their
impacts on the decks, but, unfortunately, these volumes

Figure 10. Interaction effect between average daily traffic (ADT)
and the average length of a span.
Note: SHAP = Shapley additive explanation.
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are not high enough to be eligible for receiving additional
funding resources for maintenance.

There are also some limitations worth mentioning.
First, for all bridges built in the past 40 years (1980–
2021), the authors defined the less-than-20 years-old
bridge with poor or fair deck conditions as quickly dete-
riorating decks. For bridges built in the last 20 years,
there are very few bridges with poor deck conditions. To
ensure an adequate training data size, authors include
bridges with fair deck conditions. Bridges built in the
last 20 years and with fair deck conditions are not desir-
able. This definition is defensible but still needs further
study to support it. Second, some relevant factors are
excluded from the analysis because of their correlations
with other factors, such as climate region, which may
correlate with the number of snow days. Further investi-
gation is needed on these excluded factors. Third,
quickly deteriorating deck conditions could be affected
by multiple factors rather than a single individual factor.
For a single factor, the overall performance across
bridges may be excellent, but it is entirely possible that
the combination of this factor with others may lead to
the fast deterioration of a deck. Such combination
effects require further study.
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